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J. Phys. A: Gen. Phys., Vol. 5 ,  June 1972. Printed in Great Britain 

Multiple scattering model for pion-nucleon scattering and the 
slope of the Pomeranchuk trajectory 

D FINCHAM 
Department of Natural Philosophy, University of Aberdeen, Aberdeen AB9 2UE, UK 

MS received 3 November 1971, in revised form 3 January 1972 

Abstract. The multiple scattering model of Frautschi and Margolis, with secondary trajec- 
tories included, is applied to pion-nucleon elastic and charge-exchange scattering. It is 
possible to explain the Serpukhov high energy total cross section data, but not other data 
such as the phase of the forward amplitude and the elastic scattering polarization. 

1. Introduction 

A possible explanation for the levelling off in the downward trend of pion-nucleon total 
cross sections above 30 GeV/c incident momentum is the presence of Regge cuts in the 
scattering amplitude (Barger and Phillips 1970). One method of producing such cuts is 
by applying absorption to the Regge pole exchange amplitudes. This technique has been 
applied by several authors to pion-nucleon scattering, the most exhaustive analysis 
being that of Carerras and White (1970), who give references to previous work. It is 
found that the p pomeron cut generated by the absorption, while it produces the cross 
over in the n*p  elastic differential cross sections, and the polarization in the charge- 
exchange reaction, is not sufficient to explain the high energy total cross sections. This 
leads us to consider cuts generated by multiple pomeron exchanges. 

This idea was first used by Frautschi and Margolis (1968) to discuss proton-proton 
elastic scattering. The main features of such a model (the FM model) are: 

(i) The pomeron trajectory has nonzero slope and the differentialcross section shrinks 
indefinitely with increasing energy. Other authors (eg Chiu and Finkelstein 1968, 
Arnold and Blackmon 1968) have considered similar models but with a purely imaginary 
amplitude equivalent to a zero slope pomeron. These seem to be ruled out by the 
Serpukhov data (Beznogikh et al 1969) which show that the pp elastic differential cross 
section is still shrinking at  70 GeV/c. 

(ii) The cuts produced by successively higher orders of scattering dominate the 
differential cross section at successively higher values of momentum transfer. The 
different terms interfere to give dips in the differential cross section such as are observed 
in pp scattering. 

(iii) The model produces the correlation between large total cross section and narrow 
forward peak width expected on a simple diffractive picture of the elastic scattering. 

(iv) The total cross section (otot) rises to its asymptotic value. A positive value for 8, 
the ratio of real to imaginary parts of the forward amplitude, is produced. (We call this 
quantity 8, rather than the more standard a, since x is also commonly used for trajectory 
functions.) 

838 
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The falling ctot and negative pa t  laboratory energies must be explained by the presence 
of secondary trajectories, not considered by Frautschi and Margolis. Kaplan and Schiff 
(1970) included secondary trajectories and applied the resulting model (which we will 
call the FMS model) to pp and pp elastic scattering. They were able to fit most features 
of the data except the total cross section, because in the Serpukhov data ctot for pp does 
not flatten off, but continues to fall steadily with increasing energy. 

The present work extends the FMS model to nN elastic and charge exchange scattering. 
While it was in progress the results of Hamer and Ravndal (1970) became available. 
These authors carry out similar calculations for a range of reactions which include nN 
scattering. The main differences from the present work are that they do not take spin 
into account and their discussion is restricted to elastic scattering. It will be seen later 
that our conclusions differ somewhat from theirs. 

The details of the model are given in Q 2 of the paper. In Q 3 we discuss the trajectories 
of the Regge poles with particular reference to the pomeron trajectory. The results of 
the calculations are given in 0 4 and conclusions drawn in Q 5. 

2. Themodel 

Our model is one of a class of models where the scattering amplitude Tis  obtained from 
a ‘single scattering’ term B by the prescription 

T = -i(exp(iB)- I} 

i 1 
2! 3 !  

= B + - B 2 - - B 3 +  

Such an expression is familiar from the theory of nonrelativistic scattering as the eikonal 
approximation, if B is interpreted as the Born term. The obvious relativistic generaliza- 
tion is to replace the Born term by the Feynman diagram corresponding to elementary 
particle exchange, but such a model takes no account of the presence of inelastic channels, 
and an alternative is to use Regge pole exchange for B. The terms in higher powers of B 
then have the form of Regge cuts. The theoretical justification for this ‘Regge pole 
eikonal model’ has been discussed recently by Cicuta and Sugar (1971), and in the present 
paper we restrict ourselves to the study of some of its phenomenological consequences. 

The equation (1) was written somewhat formally. In the strict eikonal model it 
applies in impact parameter space. The scattering amplitude is then found as a function 
of momentum transfer by a two dimensional Fourier transform. Instead, we choose to 
apply equation (1) to the partial wave amplitudes. The term in B2 for example then 
represents two successive scatters with the intermediate particles on the mass shell. 
From the point of view of the phenomenology it makes no difference which method is 
adopted. For example, we repeated the calculation of Hamer and Ravndal using an 
identical Born term, but calculating the full amplitude with the aid of the partial wave 
multiple scattering series rather than using the impact parameter method. The results 
agreed to within better than one per cent. 

Our technique is thus the following. We start off with Regge pole amplitudes which 
are functions of energy and of the centre of mass scattering angle 8. Since we wish to 
take spin into account, there are two amplitudes, corresponding to helicity nonflip, 
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B, +(@ and to helicity flip, B, - (e) .  We then carry out the partial wave decompositions 
1 

B: + = iJ’_ B, +(e)d;,(e) d cos e 
1 

1 

B: - = B, -(O)d<++(O) d cos 0 
1 

and construct the matrix 

This is then substituted in the multiple scattering series, equation (l), to give T J ,  the 
matrix of the full partial wave helicity amplitudes. The partial wave series is then 
resummed to give the final amplitudes : 

2 

T~ = T+ +(e)  = (25  + 1 ) ~ :  +d;+(e) 
J = l  2 

x 

T2 = T+-(8) = 1 (2J + l)T,J-dJ_+,(O). 
J = 1  2 

in terms of these amplitudes the experimental quantities are 
do 
- = - ( / ~ 1 I 2 + I ~ 2 l 2 )  dt k 2  

2 Im( TI T;”) 
P =  

I Tl I + I T21 . 

( 3 )  

Here P is the polarization, and k is the momentum in the centre of mass frame. 
In pion-nucleon scattering there are three relevant Regge pole exchanges, the 

pomeron, the f and the p. Thus we have for the elastic scattering 

B(x+p) = B,+B,-B, 

B(z-p) = B,+B,+B,. 

Once the elastic scattering amplitudes have been calculated, the amplitude for the 
charge-exchange reaction x-p  -+ non is given by 

This gives a model similar, but not identical, to the absorption model. For example, 
expanding to second order equation (6) gives 

T(cex) = J2{B, + i(B, + BJB, + . . . } . 
The absorption model on the other hand gives 

T(cex) = B,(cex) + iB,(cex)T(n:-p) 

= J2{B,+i(BP+B,+B,)B,+ . . . } .  
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Thus the absorption model has a pp cut whereas our model does not. We note in passing 
that this cut has positive signature and should be forbidden (Branson 1969). Again, 
from the point of view of the phenomenology these distinctions make little difference 
and we expect results similar to the absorption model. 

It remains for us to specify the Regge pole amplitudes. We wish to compare our 
results with those of Arnold and Blackmon (1968) who performed an eikonal model 
calculation for nN scattering, but using a purely imaginary ‘pomeron’. We therefore 
follow these authors in using a nonsense-choosing rho amplitude, and setting the p and f 
s channel helicity-flip amplitudes to zero. The amplitudes we employed were 

B, + + = g, exp( - inad2) (~I~0)cIP~oIJ~ 
B, + + = g,(a, + 1) exp(ct) exp( - inr,/2)saf/Js 

B, + 

B,+ = h( - t)1/2ctp(orp + 2) exp(bt)i exp( - ina,/2)sap/ Js. 

= g,a,(or, + 2)  exp(at)i exp( - inap/2)sap//js 

(7) 

In these amplitudes, s and tare the usual Mandelstam variables. We have a total of eight 
parameters ; g,, so, g,, c, g,, a, h, and b, not counting the trajectory functions. The factors 
of z p  ensure that both B ,  + and B ,  - vanish at the wrong signature point orp = 0 (the 
nonsense-choosing mechanism). Unlike Arnold and Blackmon we have for the sake of 
completeness included factors to make the appropriate amplitudes vanish at the wrong 
signature points zf = - 1 and a, = -2;  these factors have only a small effect in the 
region of t of interest. Another, more important, difference from their work is that we 
do not use exchange degeneracy to relate the p and f residues; this is because we will 
require a larger proportion of f  exchange to overcome the rising otot produced by the 
multiple exchanges of our pomeron with nonzero slope. 

3. Trajectory parameters 

We attempted to specify the trajectory parameters in advance, before trying to fit the 
model to the nN scattering data. Our motivation was to, reduce the number ofparameters 
involved in the fitting in order to simplify the work and, more importantly, to bring in 
as much outside information as possible. 

3.1. The pomeron 

The best place for studying the pomeron is the reaction $p -, 4 p  since there should be 
no secondary trajectories contributing (Barger and Cline 1970). This is related by the 
assumption of vector dominance of electromagnetic interactions to the reaction yp a +p, 
which is accessible experimentally. 

Writing the pomeron trajectory as a,(t) = 1 +a’t where the slope parameter a’ is to 
be determined, a pure pole model gives for the differential cross section for yp + +p 

do 
- = A exp((b + 2a‘ In s) t } .  
dt 

We fitted the above expression to the data of Anderson et a1 (1970) and obtained 
a’ = 0.61 f0.12 with b = 0.09 f0.78. 
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However, we are more interested in the multiple scattering FM model. In this model 
the spin-independent amplitude with only the pomeron contributing is 

where p = 1n(s/s0)-in/2, and g, so and a‘ are parameters. Weare (1970) studied the 
application of this expression to the reaction +p --+ $p, and obtained a fit with a’ = 0.54. 
However, in this work the parameter so was arbitrarily set equal to 1.0. Since there is 
no t dependence in the residue, this means that the value of a‘ obtained by the fitting 
procedure is constrained by the need to obtain the correct slope for the differential cross 
section, rather than just by its energy dependence. Accordingly we repeated the work of 
Weare, but allowed so to be a free parameter. This is equivalent to inserting an expo- 
nential in t in the amplitude. 

The fitting technique was the following. We fit simultaneously to otot and to F(t) ,  
the ratio of the differential cross section at t to its value at t = 0. The fitted points were 
at a selection of energies between 6 and 20 GeV/c and a selection of values of It1 between 
0 and 0.5 (GeVjc)’. The ‘experimental’ values of olot(+p) were the quark model predic- 
tions calculated by Weare. To obtain ‘experimental’ values of F(t )  we assumed that it 
had the same form as in the reaction yp --+ +p, and accordingly generated the points 
from the expression 

F ( t )  = exp((0.09 + 1.22 In s ) t }  

previously obtained as a best fit to the yp -+ +p data. To these experimental points we 
fit the theoretical expressions for otot and F(t) obtained from equation (8) for the FM 
amplitude. The resulting best fit gave x’ = 0.59 with g = 3.11 and so = 1.16. The 
uncertainty in a‘ is, because of the technique used, approximately equal to the uncertainty 
in the value obtained in the pole-only fit, namely k0.12. 

The pomeron can also be studied using the data on the forward differential cross 
section for pp scattering at Serpukhov energies, where presumably the secondary 
trajectories are not very important. A pole-only fit to these data gives a’ = 0.47 F0.09 
(Beznogikh et a1 1969). Kolbig and Margolis (1970) studied them using the FM model 
and obtained a’ = 1.0. Again in this work so was given an arbitrary value rather than 
being treated as a parameter, and the discrepancy between this value of a’ and that 
obtained by Weare reflects simply the different values for the differential cross section 
slope in the two processes. We therefore applied the FM model to high energy pp scatter- 
ing, using a similar technique to that used in the +p reaction. We fit simultaneously to 
otol(pp) using the experimental data of Foley et a1 (1967a) and Galbraith et a1 (1965) 
between 12 and 26 GeVlc and to F( t )  using the expression 

F ( t )  = exp((6.8 +0.94 In s)t} 

obtained from the Serpukhov data between 12 and 70GeVic. This gave the results 
a‘ = 0.45 with g = 10.2 and so = 0@024. The uncertainty in 2’ is taken as IfiO.09. The 
values of the parameters are only slightly sensitive to the range of values of It1 employed. 

In the two applications of the FM model above, the values of a’ obtained are very close 
to the values given by the pomeron alone without its multiple scattering corrections. 
This can be understood by reference to figure 1 which shows the effective value of a(t) in 
the FM model. This graph was obtained by calculating the differential cross section for 
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Figure 1. Effective value of a(t) in the Frautschi-Margolis model for pp scattering. The 
values of the parameters are g = 10.2, so = 0.0024, a' = 0.46. The straight line is a for the 
pole that is the line a(t) = 1.0+0.46t. 

pp scattering from equation (8)  at several energies between 20 and 70  GeV/c, and 
fitting to an expression of the form 

Both in the $p and the pp case we restricted ourselves to small momentum transfers, 
and it can be seen from figure 1 that in this region the value of a(t) is very close to that 
given by the pomeron pole alone. The two begin to diverge at larger momentum 
transfers, where the effective value of a(t) for the FM model has a minimum. This reflects 
the fact that the differential cross section has a dip structure, which is produced by 
interference between single and double scattering etc, and this structure sharpens up 
with increasing energy. 

The original application of the FM model was in fact to the study of the structure in 
the pp elastic differential cross section. In their paper Frautschi and Margolis (1968) 
obtained a' = 0.82, with so fixed at 1.0. In a repeat of the calculation we obtained 
a' = 0.55 k0.07 ,  with g = 6.2 and so = 0.27. It should be pointed out that the resulting 
fit to the data is by no means excellent, as can be seen from figure 2. 

The most reliable of the above three estimates for CI' is that from the reaction yp -+ +p, 
since it is not complicated by the presence of secondary trajectories, but it is encouraging 
to note that the other two estimates are consistent with this. Accordingly in our study 
of xN scattering we fixed the value of a' at 0.6 (GeV/c)-,. 

This value is somewhat larger than most other estimates. Regge pole fits to all the 
elastic data pre-Serpukhov gave a' N 0.1-0.3 (Rarita et a1 1968). The absorption model 
calculations of Carreras and White (1970) have a' 2: 0.3. 

3.2. The p and f 

To fix these trajectories we assume that trajectories occur in exchange degenerate pairs, 
so that the p trajectory must pass through the p and A, masses whilst the f trajectory 
must pass through the f and o masses. These conditions give 

a,(t) = 0.47 + 0.90t 

ar(t) = 0-38 + 1.01t. 
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L 
0 I 2 

-t ((GeV/c)*) 

Figure 2. Fit to the proton-proton elastic differential cross section using the Frautschi- 
Margolis model. The result shown is at 12 GeV/c, and is compared with the data of Allaby 
ei al(1968). Data at a variety of energies were used in the fitting process. The quoted error 
on all the experimental points is +4%. 

4. Results and discussion 

The fit to the nN scattering data was carried out without the aid of minimization routines, 
as the main aim was to investigate qualitative features. As will be explained below, it 
was not possible to obtain a good fit to all the data simultaneously, but we show in 
table 1 a typical set of parameters on which our discussion will be based. (We call this 
solution I.) 

Table 1. Values of the parameters for solution I 

0.5 -2.7 0.1 -2 .5  2.3 -0.85 -1.0 2.8 

4.1. Total cross sections, phase of forward amplitude, elastic differential cross sections 

The major aim of our investigation was to determine whether the model can explain 
the Serpukhov cross section data. As explained in 0 1, the pomeron alone with its 
multiple scattering corrections gives a rising otot and a positive p. We need to adjust the 
relative magnitudes of p and f exchanges to give falling otot and negative at laboratory 
energies. Adjustment of the p residue gives the difference between the n + p  and K p  
values. Figure 3 shows the total cross sections as functions of energy, and it can be seen 
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Figure 3. Total cross sections for rr+p and n-p scattering. The data are from Foley et a1 
(1967b), Galbraith et al (1965), Allaby et al (1969) and Vasiljev (1970 unpublished). 

that a good fit to the data is obtained. Our large value of a' is a help in obtaining this 
agreement, since the pomeron and its iterations then give a rapidly increasing otot. This 
combines with the falling secondary terms to reproduce the change in slope ofthe graphs. 
We were not able to obtain quite such a good fit to the data when using a value of 0-45 
for ab. 

In figure 4 we show the values of p for solution I, and it is clear that the theoretical 
values are not nearly negative enough. They can be made more negative by increasing 

0.04 0.08 0.12 0. I6 
42 

I 

Figure 4. Ratio of real to imaginary parts of the forward scattering amplitude. The data 
are from Foley et a1 (1969). 
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* *-P V-P 
12.4 GeV/c f 18.4 G e V h  

the proportion of f exchange compared with p exchange (already much larger than in 
the Regge pole model), but this then destroys the agreement with the olol data. It is 
impossible to fit oto1 and p simultaneously. 

The solution of Hamer and Ravndal(l970) is of the second type, with a larger pro- 
portion of f exchange giving a good fit to p but not to oloI. (In a note added in proof to 
their paper, these authors suggest that their solution may be in agreement with the 
revised Serpukhov data (Vasiljev 1970) but in this they were over optimistic.) We may 
hope to distinguish between the two types of solution by studying the elastic differential 
cross sections, as their energy dependence will be different in the two cases. In figure 5 
we show the results of solution I, and in figure 6 of a calculation (which we call solution 11) 
in which the p and f amplitudes are those used by Hamer and Ravndal, and to which 
we have added a p flip term identical to I. Solution I gives a distinctly better set of results 
than solution 11. (We comment on the cross-over effect in these data in 5 4.2.) However, 
this is hardly a fair way of differentiating between the two solutions, as we have not 
attempted to vary the parameters of Hamer and Ravndal to improve the fit. It is perhaps 
more illuminating to investigate the qualitative features of the two types of solution. 
The pomeron term alone, because of its nonzero slope, gives a rapidly shrinking forward 
peak in the differential cross sections. An f contribution which, as in the present examples, 
is more sharply peaked than the p, tends to counteract this effect as it decreases rapidly 

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 
- t  ((GeV/c12) 

Figure 5. Elastic scattering differential cross sections. The data are from Harting er al(1965), 
and Foley et al(1969). In this and subsequent figures error bars are omitted where they are 
too small to be shown clearly. 
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-t ((GeV/dz) 

Figure 6. Elastic scattering differential cross sections for solution 11. 

in magnitude with energy. (This is discussed in detail in Rarita et a1 1968.) Thus solution 
I1 with its larger f contribution shows much less shrinkage than solution I. In their work 
Hamer and Ravndal fitted to forward slopes calculated from the data of Foley et al 
(1963), which do indeed show little shrinkage. However, the later and much more 
detailed data of Foley et al(1969) do show considerable shrinkage, and a solution of 
type I seems to be preferred. We do not, though, regard this argument as conclusive 
since the rate of shrinkage depends on the slope of the pomeron trajectory. The argu- 
ments of 5 3 were only suggestive, and until we can investigate the pomeron singularity 
more accurately, for example by experiments at very high energies, the question must 
be regarded as still open. Another way of saying the same thing is to note that the 
relative proportions of p and f exchanges determine the rate of change of the rate of 
shrinkage with energy, and the present data are not yet good enough to make decisive 
statements about this quantity. 

4.2. Charge exchange scattering and elastic scattering polarizations 

The residue of the p nonflip amplitude is largely determined by the total cross section 
difference. We then have to vary h,, a and b to fit the charge exchange differential cross 
section. We found that it was not possible to obtain a very good fit, and in figure 7 we 
show the results of solution I. With these parameters we have a good fit in the forward 
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Figure 7. Results for the charge exchange differential cross section at 5.9 GeV/c (upper 
curve) and 13 3 GeV/c. The data are from Stirling er al(1965), and Sonderegger er ul(1966). 

direction, but the secondary peak is a factor of two too large. It is possible to adjust the 
parameters to reduce its size, but then the positions of the dip and secondary peak move 
to smaller values of Itl, spoiling the fit in the forward direction. We can understand this 
poor fit by reference to White (1969) and Carreras and White (1970) who study the 
absorption model for this reaction. They show that for a good fit the quantity N = vB/A' 
for (p+f)  exchanges must be negative, a value of N = -2  giving best results. The 
amplitudes A' and B are related to the s channel helicity amplitudes in such a way that 
setting the flip amplitudes to zero, as in our work, is equivalent to fixing N at a value 
of + 1. Our results could be improved by introducing appropriate p and f flip amplitudes 
to give the required negative value. A positive N has the effect of making the cuts too 
large ; it is well known that the p Regge pole alone gives a good fit to the charge exchange 
differential cross section. However, it should be pointed out that finite energy sum 
rules predict a positive value for N (Barger and Phillips 1968). This suggests that the 
absorption model is not giving good results for the actual scattering amplitudes, since 
it can only fit the data well with a negative N. 

For the purpose of comparison we have carried out a fit using the p pole alone, taking 
the amplitudes from equation (7). The resulting fit is shown in figure 8. Its x 2  is not 
very good, for two reasons : our p is nonsense choosing and so has a zero rather than a 
dip at a,(t) = 0;  and the trajectory was constrained as explained in (j 3.2.  If we allow 
the slope and intercept to be free parameters, we find a much better fit with 

Introducing p and flip amplitudes would also help with another problem : the cross- 
over effect. Experimentally the n + p  and n -p  elastic differential cross sections cross over 
somewhere between ltl = 0.1 and /ti = 0.3. Our cuts do give the effect, but in solution I 

a(?) = 0.62 + 1.12t. 
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Figure 8. Fit to charge exchange differential cross section at 5.9 and 13.3 GeV/c using p pole 
alone. The parameters are g = 0.85, h = -3.5, a = -0.79, b = 0.83. 

the cross-over point is at It1 = 0.46, and the best that can be obtained by varying para- 
meters is (tl = 0.34. 

Our result for the elastic scattering polarizations is shown in figure 9. I t  will be seen 
that the theoretical curves, unlike the data, change sign near It1 = 0.4. This is to be 
contrasted with the results of Arnold and Blackmon (1968) who obtained a good fit in 

Figure 9. Elastic scattering polarizations at 6 GeV/c. The data are from Borghini et al(1970). 
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a Regge eikonal model with a purely imaginary ‘pomeron’ amplitude. The difference 
between the results can be understood as follows. Since the p exchange is largely 
helicity flip the polarization (equation (4)) becomes 

p w v +  +P*, -1 
= I m V + + R e p + - - R e v + +  I m p + -  

Here V stands for the sum of p and f exchanges. In Arnold and Blackmon only the first 
term is important because the f contribution is small and the p is entirely imaginary. 
Re p+ - has a double zero at tlP = 0, and so the polarization stays on the same side of the 
axis. In our work, the pomeron amplitude rapidly develops a large real part as It1 
increases, because of the large slope of its trajectory, and the second term quickly 
dominates. Now at up = 0, Im p +  - has only a single zero, and so a change of sign is 
produced. We investigated the effect of including an extra factor of tl in the f amplitude 
(the no-compensation mechanism). Since the point tlf = 0 is close to up = 0 this has 
the effect of introducing a double zero in the term Ref+ + Im p +  - .  The results were 
changed only slightly from those of figure 9, showing that it is indeed the large real part 
to the pomeron amplitude which is the cause of the trouble. 

We do not show graphs for the charge exchange polarization and the elastic spin- 
rotation parameters since our results are very similar to the absorption model calcu- 
lations of Carerras and White (1970). It is well known that an absorptive type solution 
with nonsense choosing p finds it difficult to give sufficient charge exchange polarization ; 
a p which chooses sense works much better. In our solution the average value over the 
small Jtl region (0 < It1 < 0.2) was about 6 %, compared with 16 % in the data. (These 
remarks apply at 6 GeV/c.) At larger It1 our polarization crosses the axis and there is a 
large negative ‘spike’ at  1 t /  = 0.5. This conflicts with the recent data of Bonamy et a1 
(1971) showing a positive polarization of about 6 0 x  in this region. The sign of the spike 
can be reversed by a sufficiently large negative value of N ,  but a study by Halzen and 
Michael (1971) shows that an absorptive cut model is inconsistent with these data. 

Again, the elastic spin rotation parameters (de Lesquen et al 1971) are very sensitive 
to p and f helicity amplitudes. The value of the A parameter in our model for n -p  
scattering is close to 100% throughout the It1 range, in agreement with the data 
(de Lesquen et a1 1971). The R parameter has a small positive value, whereas the data 
have a small negative value. The sign can be changed by introducing p and f flip 
amplitudes to give a negative value for N .  

5. Conclusions 

To summarize, our conclusions are : 
(i) The model can give a good fit to the high energy total cross sections or the phase 

of the forward amplitudes, but not to both quantities simultaneously. The elastic 
differential cross section data tend to support a solution of the first type. 

(ii) Because of the large slope chosen for the pomeron trajectory, and the consequent 
large real part for the pomeron amplitude, the model cannot explain the elastic polariza- 
tion data. 

(iii) The model is, for charge exchange, very similar to the absorption model, and 
suffers from the difficulties of that model. p and f flip amplitudes are required to fit the 
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data well, but there is then a conflict with finite energy sum rules, and the polarization 
is still a problem. 

Thus we see that multiple-pomeron cuts generated by the eikonal model provide a 
possible explanation for Serpukhov cross section data, but with some undesirable 
features. It remains for us to comment briefly on some other approaches. 

(a)  The Michigan group of workers (eg Henyey et al 1969) have studied inelastic 
processes by applying the absorption model but multiplying the strength of the cut 
terms by an arbitrary factor A, which is greater than unity. This has various desirable 
effects, in particular moving the cross-over points to lower It1 values. The general 
conclusion from extensive work on inelastic processes (see the summary by Phillips 1971) 
is that cuts in nonflip amplitudes need to be enhanced in this way, whereas cuts in flip 
amplitudes are weak. It is interesting to speculate whether similar enhancement of the 
cuts generated by multiple-pomeron exchanges can help us ; for example, by increasing 
the effect of the cuts can we fit the Serpukhov crtot data with a smaller value of CI' and so 
solve the elastic scattering polarization problem? The difficulty is that there are a whole 
series of cuts, and it is not easy to know how to treat them all. If we multiply the two-p 
exchange by a factor A, perhaps the obvious step is to multiply the n-p exchange by A"-'. 
A glance at the FM amplitude, equation (8), will show that this is equivalent to reducing 
N', and we saw in 9 4.1 that this makes it more difficult to fit the otot data. 

This is the reverse of what we expect if we examine the first two terms alone, since 
reducing a' increases the strength of the first cut. However, the amplitude is a series of 
terms of alternating sign, and this means that even in the low It1 region where the first 
two terms are the dominant ones, the behaviour of the sum of the series when changes 
are made in the parameters is sensitive to the effect of those changes on the higher terms. 
In the absence of any model for treating all the cuts, we conclude that cut enhancement 
is not a fruitful procedure. 

(6) Various explanations for the Serpukhov total cross sections, other than vacuum 
cuts, have been put forward (see the review by Barger and Phillips 1971) though they 
have not been investigated in such great detail. They only differ decisively at higher 
energies than those studied so far. The preliminary results from the CERN intersecting 
storage rings (Holder 1971) show that the rate of shrinkage of the pp elastic differential 
cross section slows down at  these very high energies. It has been suggested (Phillips 
197 1) that this argues against the eikonal model, since destructive interference between 
the p and the p p  cut would give more rapid shrinkage. But again it is dangerous to 
argue from only two terms of the series. We saw in figure 1 that at very low It1 the effective 
value of CI in the FM model is very close to the pole value, and this is still true at  inter- 
secting storage ring energies. 
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